网络切片(NS)对于有效启用下一代网络中的发散网络应用至关重要。尽管如此,网络服务中的复杂服务质量(QoS)要求和多样性的异质性需要网络切片供应(NSP)优化的高计算时间。传统优化方法在满足网络应用程序的低潜伏期和高可靠性方面具有挑战性。为此,我们将实时NSP建模为在线网络切片配置(ONSP)问题。具体而言,我们将ONSP问题作为在线多目标整数编程优化(MOIPO)问题。然后,我们通过将近端策略优化(PPO)方法应用于交通需求预测来近似于Moipo问题的解决方案。我们的仿真结果表明,与最先进的Moipo求解器相比,该方法的有效性具有较低的SLA违规率和网络操作成本。
translated by 谷歌翻译
We study the problem of model selection in causal inference, specifically for the case of conditional average treatment effect (CATE) estimation under binary treatments. Unlike model selection in machine learning, we cannot use the technique of cross-validation here as we do not observe the counterfactual potential outcome for any data point. Hence, we need to design model selection techniques that do not explicitly rely on counterfactual data. As an alternative to cross-validation, there have been a variety of proxy metrics proposed in the literature, that depend on auxiliary nuisance models also estimated from the data (propensity score model, outcome regression model). However, the effectiveness of these metrics has only been studied on synthetic datasets as we can observe the counterfactual data for them. We conduct an extensive empirical analysis to judge the performance of these metrics, where we utilize the latest advances in generative modeling to incorporate multiple realistic datasets. We evaluate 9 metrics on 144 datasets for selecting between 415 estimators per dataset, including datasets that closely mimic real-world datasets. Further, we use the latest techniques from AutoML to ensure consistent hyperparameter selection for nuisance models for a fair comparison across metrics.
translated by 谷歌翻译
图像注册可用于量化前列腺癌患者纵向MR图像的形态变化。本文描述了改善基于学习的注册算法的发展,对于这种挑战性的临床应用程序通常具有高度可变但有限的培训数据。首先,我们报告说,潜在空间可以聚集到一个比在经过训练的注册网络深层瓶颈特征的瓶颈特征中通常发现的尺寸空间要低得多。基于此观察结果,我们提出了一种层次量化方法,使用具有约束大小的共同训练的词典来离散学习的特征向量,以改善注册网络的概括。此外,在潜在的量化空间中,独立优化了一种新颖的协作词典,以合并其他先验信息,例如对腺体或其他感兴趣的区域的分割。根据来自86名前列腺癌患者的216张真实临床图像,我们显示了这两个组件的功效。从腺体上的骰子和相应地标的目标登记误差方面,获得了统计学意义的提高注册精度,后者的实现了5.46毫米,而没有量化的基线提高了28.7 \%。实验结果还表明,在训练数据和测试数据之间,性能的差异确实被最小化了。
translated by 谷歌翻译
我们研究了学习单个神经元的基本问题,即$ \ mathbf {x} \ mapsto \ sigma(\ mathbf {w} \ cdot \ cdot \ mathbf {x})$单调激活$ \ sigma $ \ sigma: \ mathbb {r} \ mapsto \ mathbb {r} $,相对于$ l_2^2 $ -loss,在存在对抗标签噪声的情况下。具体来说,我们将在$(\ mathbf {x},y)\ in \ mathbb {r}^d \ times \ times \ mathbb {r} $上给我们从$(\ mathbf {x},y)\ on a发行$ d $中给我们标记的示例。 }^\ ast \ in \ mathbb {r}^d $ achieving $ f(\ mathbf {w}^\ ast)= \ epsilon $,其中$ f(\ mathbf {w})= \ m马理bf {e} (\ mathbf {x},y)\ sim d} [(\ sigma(\ mathbf {w} \ cdot \ mathbf {x}) - y)^2] $。学习者的目标是输出假设向量$ \ mathbf {w} $,以使$ f(\ m athbb {w})= c \,\ epsilon $具有高概率,其中$ c> 1 $是通用常数。作为我们的主要贡献,我们为广泛的分布(包括对数 - 循环分布)和激活功能提供有效的恒定因素近似学习者。具体地说,对于各向同性对数凸出分布的类别,我们获得以下重要的推论:对于逻辑激活,我们获得了第一个多项式时间常数因子近似(即使在高斯分布下)。我们的算法具有样品复杂性$ \ widetilde {o}(d/\ epsilon)$,这在多毛体因子中很紧。对于relu激活,我们给出了一个有效的算法,带有样品复杂性$ \ tilde {o}(d \,\ polylog(1/\ epsilon))$。在我们工作之前,最著名的常数因子近似学习者具有样本复杂性$ \ tilde {\ omega}(d/\ epsilon)$。在这两个设置中,我们的算法很简单,在(正规)$ L_2^2 $ -LOSS上执行梯度散发。我们的算法的正确性取决于我们确定的新结构结果,表明(本质上是基本上)基础非凸损失的固定点大约是最佳的。
translated by 谷歌翻译
我们将自动辩护的机器学习的想法扩展到动态处理方案,并将其更普遍地扩展到嵌套功能。我们表明,可以根据递归riesz的代表表征嵌套平均回归的递归riesz代表来重新说明动态治疗方案的多重强大公式。然后,我们应用递归RIES代表估计学习算法,该学习算法估算偏低的校正,而无需表征校正术语的外观,例如,逆向概率加权术语的产物,如先前在双重稳健估计上所做的那样在动态状态中。我们的方法定义了一系列损失最小化问题的序列,其最小化是偏见校正的误解器,因此规避了解决辅助倾向模型的需求,并直接优化目标降低偏见校正的平均平方误差。我们为动态离散选择模型的估计提供了进一步的应用。
translated by 谷歌翻译
我们推出了一般,但简单,尖锐的界限,用于广泛的因果参数的省略可变偏置,可以被识别为结果的条件期望函数的线性功能。这些功能包括许多传统的因果推断研究中的调查目标,例如(加权)平均潜在结果,平均治疗效果(包括亚组效应,例如对处理的效果),(加权)平均值来自协变态分布的转变的衍生品和政策影响 - 所有是一般的非参数因果模型。我们的建设依赖于目标功能的riesz-frechet表示。具体而言,我们展示了偏差的绑定如何仅取决于潜在变量在结果中创建的附加变型以及用于感兴趣的参数的RIESZ代表。此外,在许多重要病例中(例如,部分线性模型中的平均治疗效果,或在具有二元处理的不可分配模型中),所示的界定依赖于两个易于解释的数量:非参数部分$ r ^ 2 $(Pearson的相关性与治疗和结果的未观察变量的比例“。因此,对省略变量的最大解释力(在解释处理和结果变化时)的简单合理性判断足以将整体界限放置在偏置的尺寸上。最后,利用脱叠机器学习,我们提供灵活有效的统计推理方法,以估计从观察到的分布识别的界限的组件。
translated by 谷歌翻译
一个重点的轨道旨在发现与目标主题相关的尽可能多的网页,同时避免无关紧要的网页。增强学习(RL)已被用来优化集中的爬行。在本文中,我们提出了TRE,这是一个具有RL授权的框架,用于集中爬行。我们将爬行环境建模为马尔可夫决策过程,RL代理商旨在通过确定良好的爬行策略来解决该过程。从一些人提供的关键字和一个小文本语料库开始,预计将与目标主题相关,TRE遵循关键字设置的扩展过程,该过程指导爬行,并培训构成奖励功能的分类器。为了避免选择最佳动作的计算上不可行的蛮力方法,我们提出了树框架,这是一种基于决策树的算法,可适应大型状态和动作空间,仅找到少数代表性的动作。树木范围使代理可以通过选择最佳代表性动作而贪婪地选择近乎最佳的动作。在实验上,我们表明TRE在收获率(相关页面的比率)方面显着胜过最先进的方法,而树木的范围则通过数量级降低,在每个时间段上需要评估的动作数量。
translated by 谷歌翻译
预计涌现为5G和超越无线工业虚拟化网络将支持大量的机器人操纵器。根据所涉及的过程,这些工业机器人可能导致大量的多模态流量,需要一直遍历网络(公共/私有)边缘云,其中高级处理,控制和服务编排将采取地方。在本文中,我们通过利用工业环境中机器人操纵器的重复过程的潜在伪确定性质来执行流量工程,并提出整数线性编程(ILP)模型,以最大限度地减少网络中的最大聚合流量。在所提出的模型中也考虑了任务序列和时间间隙要求。为了解决ILP中的维度的诅咒,我们提供了一种随机搜索算法,具有二次时间复杂度。数值调查表明,与机器人操纵器以不协调的方式运行的标称情况相比,该方案可以将高达53.4%的峰值数据速率降低至53.4%,从而显着改善潜在网络资源的利用率。
translated by 谷歌翻译
感兴趣的许多因果和政策效应都是由高维或非参数回归函数的线性功能定义的。 $ \ sqrt {n} $ - 对目标对象的一致且渐近地正常估计需要偏见,以减少正则化和/或模型选择对感兴趣对象的影响。通常,通过将校正项添加到功能的插件估计器中来实现,从而导致属性,例如半参数效率,双重鲁棒性和Neyman正交性。我们基于自动学习使用神经网和随机森林的Riesz表示的自动偏差程序。我们的方法仅依赖于黑框评估Oracle访问线性功能,并且不需要其分析形式的知识。我们提出了一种多任务神经网络偏见方法,具有随机梯度下降最小化的Riesz代表和回归损失,同时共享这两个函数的表示层。我们还提出了一种随机森林方法,该方法了解Riesz函数的局部线性表示。即使我们的方法适用于任意功能,我们在实验上发现它的性能与Shi等人的最先进的神经网状算法相比。 (2019)对于平均治疗效果功能的情况。我们还使用汽油需求的汽油价格变化的半合成数据来评估我们的方法,即通过连续处理估算平均边缘效应的问题。
translated by 谷歌翻译
我们在高斯分布下使用Massart噪声与Massart噪声进行PAC学习半个空间的问题。在Massart模型中,允许对手将每个点$ \ mathbf {x} $的标签与未知概率$ \ eta(\ mathbf {x})\ leq \ eta $,用于某些参数$ \ eta \ [0,1 / 2] $。目标是找到一个假设$ \ mathrm {opt} + \ epsilon $的错误分类错误,其中$ \ mathrm {opt} $是目标半空间的错误。此前已经在两个假设下研究了这个问题:(i)目标半空间是同质的(即,分离超平面通过原点),并且(ii)参数$ \ eta $严格小于$ 1/2 $。在此工作之前,当除去这些假设中的任何一个时,不知道非增长的界限。我们研究了一般问题并建立以下内容:对于$ \ eta <1/2 $,我们为一般半个空间提供了一个学习算法,采用样本和计算复杂度$ d ^ {o_ {\ eta}(\ log(1 / \ gamma) )))}} \ mathrm {poly}(1 / \ epsilon)$,其中$ \ gamma = \ max \ {\ epsilon,\ min \ {\ mathbf {pr} [f(\ mathbf {x})= 1], \ mathbf {pr} [f(\ mathbf {x})= -1] \} \} $是目标半空间$ f $的偏差。现有的高效算法只能处理$ \ gamma = 1/2 $的特殊情况。有趣的是,我们建立了$ d ^ {\ oomega(\ log(\ log(\ log(\ log))}}的质量匹配的下限,而是任何统计查询(SQ)算法的复杂性。对于$ \ eta = 1/2 $,我们为一般半空间提供了一个学习算法,具有样本和计算复杂度$ o_ \ epsilon(1)d ^ {o(\ log(1 / epsilon))} $。即使对于均匀半空间的子类,这个结果也是新的;均匀Massart半个空间的现有算法为$ \ eta = 1/2 $提供可持续的保证。我们与D ^ {\ omega(\ log(\ log(\ log(\ log(\ epsilon))} $的近似匹配的sq下限补充了我们的上限,这甚至可以为同类半空间的特殊情况而保持。
translated by 谷歌翻译